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Abstract 

Kinematic couplings are often used in synchrotron radiation facilities to achieve high-precision 
positioning and relocation of opto-mechanical components. The analytical and numerical 
modeling of their stress-strain behavior is however difficult, as it implies the necessity to deal 
with the Hertz theory of point contacts between elastically deforming solids. 
This work addresses the limits of applicability of the analytical approaches available in 
literature for the calculation of high-precision kinematic couplings. The validity of the 
theoretical models, as well as the achievable repeatability of the couplings, is assessed 
experimentally for various loading conditions and material types. 
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1. Introduction 

Kinematic couplings (Fig. 1) are well suited for high-precision applications such 
as the precision positioning and relocation of opto-mechanical components, metrological 
applications, scientific apparatuses, the assembly of microparts as well as the high-
precision manufacturing systems and machine tools [1,2]. At synchrotron radiation (SR) 
facilities, kinematic mounts are often used to obtain independent and reproducible 
position adjustment of beamline components, especially those to be removed for 
servicing and precisely relocated to their original positions (e.g. end-stations and front-
end components). The adoption of kinematic mount principles has in fact resulted in 
significant reductions of the time spent in aligning the SR devices and an increase of the 
time spent using them (acquiring data) [3]. Kinematic couplings are in fact self-locating 
and free from backlash, allowing re-positioning repeatabilities in the micrometric and 
sub-micrometric range to be attained in static, but also in applications involving dynamic 
forces [1-3]. These devices can accommodate differential thermal growths, keeping the 
resulting mechanical stresses to a minimum. They are not very sensitive to contamination 
and do not require an extensive wear-in period. Kinematic mounts are also characterized 
by limited costs, since their repeatability is orders of magnitude bigger than the accuracy 
to which they are manufactured. Moreover, since they are not overconstrained, their 
behavior can be represented in a closed form solution [1,2]. 

The main drawback of kinematic couplings is that, with only six contact points, 
they present high contact stresses (cf. [3]), which are difficult to calculate both 
analytically and numerically. In fact, the analysis of such devices implies the necessity to 
consider the non-linear Hertz theory of point contacts between elastically deforming 
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solids [4]. In literature various approaches can be traced which deal with such a problem. 
The exact model based on the theory of elasticity is complex since it involves an iterative 
evaluation of elliptic integrals [5]. The other approaches are based on approximated 
methods that make use of diagrams [6, 7], polynomial approximations [8] or interpolating 
procedures [6,9,10] for the calculation of the stress-strain behavior of the bodies in 
contact as function of the mechanical characteristics and main dimensions of the 
coupling. 

The aim of this work is to establish the limits 
of applicability of the analytical approaches available 
in literature depending on the required degrees of 
accuracy. The validity of the theoretical models is 
then assessed experimentally via high-precision 
measurements. These allow the influence of the 
various mechanical parameters on the behavior of 
kinematic couplings to be established.               

Fig. 1: 3-V groove kinematic mount. 

                         
           Fig. 2: A ball in a V groove.  
                                  Fig. 3: Model parameters. 

2. Analytical Models 

Two kinematic mount configurations are applied in praxis: the cone-V-flat 
(Kelvin clamp) configuration, and the 3-V groove (Maxwell mount) configuration. In this 
work 3-V groove kinematic couplings (Fig. 1) are considered, since they are 
characterized by several advantages that make them suited for high-precision applications 
i.e., [1,8]: 

a symmetric arrangement is maintained, • 
• 
• 

• 
• 

simpler manufacturing (reduced manufacturing costs) is assured, 
higher dynamic stability is obtained (the stress state in the mount is 
minimized), 
uniform contact stresses are assured, and 
thermal expansion takes place around a central point. 

In this case the treated problem therefore reduces to the study of the stress-strain behavior 
of a ball in a groove (Fig. 2).               

The analytical model describing the non-linear behavior of point contacts between 
elastically deforming isotropic solids loaded perpendicular to the surface (shear stress, 
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i.e. friction, is neglected), in which the 
dimension of the contact area is small 
compared to the radii of curvature and the 
dimensions of the involved bodies, known 
as the Hertzian model [4-6,8,11], is often 
employed in engineering practice (e.g. for 
ball bearing, gear couplings and 
locomotive wheels studies). The 
corresponding exact analytical model 
entails, however, a lengthy iterative 
evaluation of transcendental equations 
involving the complete elliptic integrals of 
the first and second kind (Fig. 4). In fact, 
by indicating with E1 and E2 the Young’s 
moduli of the bodies in contact, with F the 
normal contact load (Fig. 3), with ν1 and 
ν2 the Poisson’s ratios of the bodies, with Rb the ball radius (Rb=Rb min=Rb max) and with Rg 

min the groove radius (Rg max=∞), the following notation can be introduced [5]: 

Fig. 4: Exact analytical model. 
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- ratio of the major and minor semiaxes lengths of the elliptical contact area 
(Fig. 3): 
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The resulting calculation algorithm is then arranged as shown on Fig. 4, where 
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are the complete elliptic integrals of the first and second kind. 
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The results of the algorithm represent then the major (c) and minor (d) semiaxes 
of the elliptical contact area, the interpenetration distance δ of the bodies in contact 
(distance of approach of two far-filed points in the bodies) and the maximum contact 
stress qmax: 
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The approximated methods given in literature in which the need to calculate the 
elliptic integrals is obviated by introducing polynomial [8], tabular [6,9,10] or graphical 
[6,7] representations of the characteristic parameters are summarized in Table 1, where a 
is the radius of the circular contact area, α, β, γ, and λ are the characteristic parameters 
(of different value for the various considered methods), cosθ is dependent on the radii of 
curvature and φ - the angle between the planes of principal curvature (Fig. 3), while the 
other parameters are analogous to those of the exact analytical model given above. 

Table 1: Approximated Analytical Methods 
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The results obtained with the exact approach are compared in Fig. 5 with the 
approximated analytical methods. For clarity reasons, the results are given as differences 
of each of the considered method with respect to the exact solution. It can thus be 
observed that the gap-bending hypothesis [8], in which the contact between two curved 
surfaces is reduced to that of a plane and an equivalent sphere, introduces considerable 
errors. It is worth noticing, however, that this hypothesis yields conservative results. 
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           (a)        (b)            (c) 

Fig. 5: Ratio of the semiaxes widths of the elliptical contact area (a), contact stresses 
normalized with respect to the Hertz stress σHertz (b) and normalized interpenetration 

distances (c) versus the ratio of the radii of curvature M. 

The errors introduced by the approximated methods based on polynomial, tabular 
and graphical representations are always smaller than ± 2% (or even, for the methods 
given in [9, 10], ≤ ±0.2% - Fig. 5). Given, however, the small entity of the stresses and 
strains involved in most high-precision applications of kinematic mounts, in absolute 
terms these errors are negligible in all but those cases in which true nanometric 
accuracies are sought. Only in the case when the mentioned characteristic parameters 
approach their limit values (respectively 0 and ∞), which physically corresponds to the 
case when the curvature of the groove approaches that of the ball, the errors involved in 
the approximated methods become appreciable. In this case, however, the basic 
assumptions of the Hertzian model do not hold any more, and the Hertz theory itself 
starts to break down [8]. 

3. Experimental Assessment 

3.1 Experimental Set-Up 

In high-precision applications the repeatability of the couplings has to be 
addressed [8]. On the other hand, the considered analytical approaches cannot take into 
account the extent of non-repeatability caused by friction (friction affects not only 
repeatability, but also the kinematicity, the stiffness and the centering ability of the 
couplings), as this effect can be evaluated only with elaborated numerical formulations 
based on incremental variational inequalities [12]. Even in that case, however, the extent 
of variation due to the stochastic nature of friction is not taken into account. Moreover, 
since the magnitude of the deflections is often in the submicron range, surface finish 
plays an important role. In fact, real solids make contact only where the asperities on the 
two surfaces come together, and therefore Hertzian analysis is merely the limit case to 
which real contacts tend [13]. Other effects, such as load asymmetry, also affect the 
repeatability of the couplings. 
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 examine thus the repeatability and, as the most important feature for 
plications, the interpenetration distance of the couplings, an 
p was built (Fig. 6). Gothic-arch shaped grooves (Rg min=12 mm÷∞) 
act surfaces (Ra=100 nm) are built as modular inserts and epoxied onto 
 plate. For balanced stiffness in all directions, the angle of inclination 
 chosen to be 45°, while good stability and overall stiffness is obtained 
upling configuration where the normals to the planes of the contact 

t the angles of the triangle formed by the balls that lie in the grooves. 
e compliance of balls’ fixation low compared to that of the coupling, 
10 mm, Ra=20÷60 nm) are inserted into conical seats at the upper 
nished until the surface is brinelled, and then epoxied [8]. 

is thermally isolated (a stability of ±0.1°C was reached). Stainless steel 
 of various hardness (HRC34÷67) are used. To minimize fretting 
 as well as the footprint (i.e. to approach as much as possible true point 
mic (WC and Si3N4) grooves and balls are also employed. The loads 
coupling via a pneumatic piston, and their magnitudes are measured 
(±0.25% ES) calibrated load cell. The interpenetration distance is 
ar absolute encoders (HEIDENHAIN type CT 6002, resolution: 5 nm, 
). Two encoders are used to have control of the symmetry of behavior. 

 Discussion 

 of typical cyclic measurements and the corresponding theoretical data 
 the exact analytical model are shown in Fig. 7. The reported values 

ages (with 100 points taken in each cycle). The shown interval of 
 ±10% of the measured values) is mainly due to the dimensional 
couplings’ components, the residual compliances (e.g., the epoxied 
he uncertainty in the mechanical properties of the used materials (cf. 
re devoted to the set-up of the experimental apparatus, this uncertainty 
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is hence much larger than the errors introduced by the adoption of the approximated 
analytical methods outlined above. 
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Fig. 7: Comparison of theoretical and experimental results for different materials. 

The obtained results can be summarized as: 
In all the considered cases, the theoretical values are within the intervals of 
uncertainty of the measurements, regardless of the used materials. For small 
loads the measured values are smaller than the theoretical ones, which could 
be due to the surface roughness and the resulting flattening of the contact 
points (“micro-approaching” [5]). This is supported also by the observed 
brinelling of the surfaces in contact (Fig. 8). In 
fact, previous studies have allowed to establish 
that because of the surface roughness, for light 
loads the peak pressure can be only 1/3 of the 
theoretical one, while the contact area can in turn 
be up to 10 times larger than in theory [13]. It 
should also be noticed that the micro- and nano-
hardness and Young’s moduli differ from the 
macroscopic ones and depend on the state of the 
surface [14], which can have a significant 
impact on the results in this region, too. 

• 

• 

• 

BRINELLED 
REGION 

For higher loads the experimental results are 
generally closer to the theoretical ones, which 
could be due to the relatively lower influence of the surface finish and the 
residual compliances. In this case, by using ceramic coupling components, a 
tendency towards higher measured interpenetration distances than those 
calculated theoretically was observed. This behavior could be due to the 
uncertainty in the mechanical properties of ceramic materials. 

Fig. 8: Brinelling of 
the contact surface. 

Although lubrication generally has a small effect (cf. Fig. 7), in some 
instances it can induce a lowering of the measured values of up to 10%. The 
explanation for this occurrence was not found. 
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• 

• 

Usage of softer materials (HRC34 steel) causes plastic deformations even 
for small loads. This increases the contact area, hence lowering the resulting 
interpenetration distances far below the theoretical values. 
After a wear-in period of ≤50 cycles, the repeatability of the couplings is 
typically in the σ≤100 nm range i.e., comparable to the surface finish of the 
coupling interface. The residual non-repeatability could be due not only to 
surface finish, but also to non-linearities such as creeping [11] or pre-sliding 
displacement effects [15]. 

A trial was performed also to measure the area of the contact region by optical 
means. The measurement was performed by employing a 3D ZYGO type Newview 5010 
scanning-white-light-interferometry-based surface profiler used to characterize the 
polishing accuracy of optical surfaces (vertical resolution: 0.1 nm, RMS repeatability: 
0.4 nm, lateral resolution: 4.72 µm). It was hence shown that: 

 In the elastic domain the results are characterized by low accuracy and big 
dispersion. 

 In the plastic domain, the best results are obtained by applying a thin (ca. 
50 nm) graphite coating to the contact area. Although a good accuracy is 
obtained, the results are of little practical use. 

 Previous trials to measure the contact area by using contact resistance 
measurements [16] or techniques based on photoelesticity [11] have also 
given results characterized by low accuracy. The usage of newly developed 
pressure sensitive films [17] could allow to improve the situation in this 
regard. 

4. Conclusions 

Except for the gap–bending hypothesis method, the approximated analytical 
approaches available in literature for the evaluation of the stress-strain behavior of 
kinematic couplings are giving results equivalent to those obtained with the exact 
analytical model in the micrometric and sub-micrometric domain, and are therefore of 
suitable accuracy for most of the practical cases encountered in dimensioning high-
precision kinematic couplings. 

In the whole range of elastic deformations, the correspondence of the theoretical 
values of the interpenetration distances with the experimental ones is within the intervals 
of uncertainty of the latter, regardless of the used materials and lubrication conditions. 
These effects seem, in fact, to influence the behavior only in the submicrometric range. 

The repeatability of the couplings is comparable to the surface finish of the 
contact interface and thus it is in the 100 nm range. 

The measurements of the contact area are characterized by a low accuracy and are 
left to a future study where newly developed pressure sensitive films will be employed. 
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